Rumex acetosa Y chromosomes: constitutive or facultative heterochromatin?

نویسندگان

  • Magdalena Mosiołek
  • Paweł Pasierbek
  • Janusz Malarz
  • Maria Moś
  • Andrzej J Joachimiak
چکیده

Condensed Y chromosomes in Rumex acetosa L. root-tip nuclei were studied using 5-azaC treatment and immunohistochemical detection of methylated histones. Although Y chromosomes were decondensed within root meristem in vivo, they became condensed and heteropycnotic in roots cultured in vitro. 5-azacytidine (5-azaC) treatment of cultured roots caused transitional dispersion of their Y chromosome bodies, but 7 days after removal of the drug from the culture medium, Y heterochromatin recondensed and again became visible. The response of Rumex sex chromatin to 5-azaC was compared with that of condensed segments of pericentromeric heterochromatin in Rhoeo spathacea (Sw.) Steam roots. It was shown that Rhoeo chromocentres, composed of AT-rich constitutive heterochromatin, did not undergo decondensation after 5-azaC treatment. The Y-bodies observed within male nuclei of R. acetosa were globally enriched with H3 histone, demethylated at lysine 4 and methylated at lysine 9. This is the first report of histone tail-modification in condensed sex chromatin in plants. Our results suggest that the interphase condensation of Y chromosomes in Rumex is facultative rather than constitutive. Furthermore, the observed response of Y-bodies to 5-azaC may result indirectly from demethylation and the subsequent altered expression of unknown genes controlling tissue-specific Y-inactivation as opposed to the global demethylation of Y-chromosome DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives.

In this paper, we analyze a satellite-DNA family, the RAYSI family, which is specific of the Y chromosomes of Rumex acetosa, a dioecious plant species with a multiple sex-chromosome system in which the females are XX and the males are XY(1)Y(2). Here, we demonstrate that this satellite DNA is common to other relatives of R. acetosa, including Rumex papillaris, Rumex intermedius, Rumex thyrsoide...

متن کامل

Cloning and characterization of dispersed repetitive DNA derived from microdissected sex chromosomes of Rumex acetosa.

Rumex acetosa is characterized by a multiple chromosome system (2n = 12 + XX for females, and 2n = 12 + XY1Y2 for males), in which sex is determined by the ratio between the number of X chromosomes and autosome sets. For a better understanding of the molecular structure and evolution of plant sex chromosomes, we have generated a sex chromosome specific library of R. acetosa by microdissection. ...

متن کامل

Contrasting Patterns of Transposable Element and Satellite Distribution on Sex Chromosomes (XY1Y2) in the Dioecious Plant Rumex acetosa

Rumex acetosa is a dioecious plant with the XY1Y2 sex chromosome system. Both Y chromosomes are heterochromatic and are thought to be degenerated. We performed low-pass 454 sequencing and similarity-based clustering of male and female genomic 454 reads to identify and characterize major groups of R. acetosa repetitive DNA. We found that Copia and Gypsy retrotransposons dominated, followed by DN...

متن کامل

In Vitro Organogenesis in Rumex Thyrsiflorus Fingerh. – Problems of Sex Ratios

Rumex thyrsiflorus Fingerh. is one of the few dioecious plant species, which have sex chromosomes. We conducted the preliminary experiments to determine the type of morphogenesis of R. thyrsiflorus explants cultured in vitro and to verify, using PCR-based methods, if there is the relationship between sex and morphogenetic response of explants micropropagated under in vitro conditions. The resul...

متن کامل

The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure.

The mammalian inactive X chromosome (Xi) is a model for facultative heterochromatin. Increased DNA compaction for the Xi, and for facultative heterochromatin in general, has long been assumed based on recognition of a distinct Barr body using nucleic-acid staining. This conclusion has been challenged by a report revealing equal volumes occupied by the inactive and active X chromosomes. Here, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Folia histochemica et cytobiologica

دوره 43 3  شماره 

صفحات  -

تاریخ انتشار 2005